Няма описание
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. #include <stdint.h>
  2. #include <avr/io.h>
  3. #include <util/delay.h>
  4. #include <stdio.h>
  5. #include <stdbool.h>
  6. #include "led.h" // TODO: for debugging
  7. #include "spi.h"
  8. #include "nrf24l01.h"
  9. #include "nrf24l01_definitions.h"
  10. /* TODO
  11. * - Send functions
  12. * - Interrupt handling for Send
  13. */
  14. extern volatile bool nrfInterruptRaised;
  15. void Print_Register_Contents(uint8_t address);
  16. void Send_TX_Flush_Command(void);
  17. /* Startup and initial configuration of the NRF24L01 */
  18. void Initialize_NRF24L01(void)
  19. {
  20. CONFIG_REGISTER configRegisterContents = {.byte = 0x0};
  21. /* Configure the AVR pins for the nrf24l01 */
  22. Set_NRF24L01_Pins();
  23. /* Wait more than 10.3 ms to make sure the nrf24l01 is running */
  24. _delay_ms(11);
  25. /* Write the PWR_UP bit of the CONFIG register (EN_CRC is also set) */
  26. configRegisterContents.bits.EN_CRC = 0x1;
  27. configRegisterContents.bits.PWR_UP = 0x1;
  28. Write_NRF_Register(CONFIG_ADDRESS, configRegisterContents.byte);
  29. /* Wait more than 1.5 ms for the change to take effect */
  30. _delay_ms(2);
  31. /* The NRF24L01 is now in the mode Standby-I */
  32. }
  33. void Set_NRF24L01_Pins(void)
  34. {
  35. /* Set up the NRF24L01 */
  36. NRF_CE_DDR |= (1 << NRF_CE_PIN);
  37. NRF_CSN_DDR |= (1 << NRF_CSN_PIN);
  38. /* Set the chip select pin to not selected */
  39. NRF_CSN_PORT |= (1 << NRF_CSN_PIN);
  40. /* Ensure that the CE pin is set to 0*/
  41. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  42. /* Set the interrupt pin */
  43. /* TODO: PCINT21 -> PCINT2 */
  44. NRF_IRQ_DDR &= ~(1 << NRF_IRQ_PIN); // Set the pin as input
  45. NRF_IRQ_PORT |= (1 << NRF_IRQ_PORT); // Enable the pullup for the pin
  46. }
  47. void Configure_Transmission(uint8_t moduleId)
  48. {
  49. FEATURE_REGISTER featureRegisterContents = {.byte = 0x0};
  50. DYNPD_REGISTER dyndpRegisterContents = {.byte = 0x0};
  51. SETUP_RETR_REGISTER setupRetrRegisterContents = {.byte = 0x0};
  52. uint8_t txAddress[5] = {0xB3, 0xB3, 0xB3, 0xB3, 0x00};
  53. uint8_t rx0Address[5] = {0xB3, 0xB3, 0xB3, 0xB3, 0x20};
  54. /*
  55. * - Length of CRC (CRCO in CONFIG)
  56. * - Enable auto acknowledgment (EN_AA)
  57. * -> Register already set correctly after reset
  58. * - Enable data pipes (EN_RXADDR)?
  59. * -> Two pipes are already enabled on reset
  60. * - Set up address width (SETUP_AW)
  61. * -> 3 bytes
  62. * - Automatic Retransmission (SETUP_RETR)
  63. * -> ARD = 0b0000
  64. * -> 3 retransmits -> ARC = 0b0011
  65. * -> Register already set correctly after reset
  66. * - RF Channel (RF_CH)
  67. * -> RF_CH = 0b1010000
  68. * - RF Setup (RF_SETUP)
  69. * -> first use reset values, can be fine tuned later
  70. * - Enable dynamic payload length (DYNPD) -> command activate + 0x73, then set bits in FEATURE?
  71. */
  72. /* Set the address width to 3 bytes */
  73. //Write_NRF_Register(0x03, 0x1);
  74. /* Set the frequency to 1450 MHz */
  75. Write_NRF_Register(RF_CH_ADDRESS, 0x32);
  76. /* Enable dynamic payload length */
  77. Send_Activate_Command();
  78. featureRegisterContents.bits.EN_DPL = 1; // enable dynamic payload length
  79. Write_NRF_Register(FEATURE_ADDRESS, featureRegisterContents.byte);
  80. /* */
  81. setupRetrRegisterContents.bits.ARC = 0x3;
  82. setupRetrRegisterContents.bits.ARD = 0xF;
  83. Write_NRF_Register(SETUP_RETR_ADDRESS, setupRetrRegisterContents.byte);
  84. /* set dynamic payload length for all data pipes */ // TODO: only pipe 0 is currently in use -> don't set the other values
  85. dyndpRegisterContents.bits.DPL_P0 = 1;
  86. dyndpRegisterContents.bits.DPL_P1 = 1;
  87. dyndpRegisterContents.bits.DPL_P2 = 1;
  88. dyndpRegisterContents.bits.DPL_P3 = 1;
  89. dyndpRegisterContents.bits.DPL_P4 = 1;
  90. dyndpRegisterContents.bits.DPL_P5 = 1;
  91. Write_NRF_Register(DYNPD_ADDRESS, dyndpRegisterContents.byte);
  92. /* Set the TX address */
  93. Set_TX_Address(txAddress, MAX_ADDRESS_LENGTH);
  94. rx0Address[4] = moduleId; // The last byte of the address corresponds to the Id set by the pin programming
  95. Set_RX_P0_Address(rx0Address, MAX_ADDRESS_LENGTH);
  96. PCMSK2 |= (1<<PCINT21); // Set the external interrupt for PD5
  97. }
  98. void NRF24L01_Send_Message(uint8_t *buffer, uint8_t length)
  99. {
  100. STATUS_REGISTER statusRegisterContents = {.byte = 0x0};
  101. if ((length > 32) || (length == 0))
  102. {
  103. return;
  104. }
  105. PCICR |= (1<<PCIE2); // Enable the interrupt for the IRQ signal
  106. Write_Message_To_TX_FIFO(length, buffer);
  107. /* Set CE = 1 for more than 10 us */
  108. NRF_CE_PORT |= (1 << NRF_CE_PIN);
  109. _delay_us(15);
  110. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  111. while (nrfInterruptRaised == false); // Wait until the transmission is complete
  112. /* An interrupt instead of polling the status register is used to avoid transmission errors
  113. * induced by the SPI:
  114. * https://forum.mysensors.org/topic/10452/nrf24l01-communication-failure-root-cause-and-solution
  115. */
  116. LED_PORT |= (1 << LED_PIN);
  117. statusRegisterContents.byte = Read_NRF_Status_Register();
  118. if (statusRegisterContents.bits.MAX_RT == 1)
  119. {
  120. Send_TX_Flush_Command(); /* Remove the packet from the TX FIFO as it is not done automatically */
  121. }
  122. /* Reset the interrupts */
  123. statusRegisterContents.bits.TX_DS = 1;
  124. statusRegisterContents.bits.MAX_RT = 1;
  125. statusRegisterContents.bits.RX_DR = 1;
  126. Write_NRF_Register(STATUS_ADDRESS, statusRegisterContents.byte);
  127. PCICR &= ~(1<<PCIE2); // Disable the interrupt for the IRQ signal
  128. nrfInterruptRaised = false;
  129. return;
  130. }
  131. void Print_Register_Contents(uint8_t address)
  132. {
  133. uint8_t registerContent[5];
  134. uint8_t lengthRead;
  135. char registerContentString[30];
  136. lengthRead = Read_NRF_Register(address, registerContent);
  137. registerContentString[0] = '\0';
  138. for (uint8_t i = 0; i < lengthRead; i++)
  139. {
  140. sprintf(registerContentString, "%s0x%x ", registerContentString, registerContent[i]);
  141. }
  142. }
  143. /* Send a message:
  144. * - Set PRIM_RX = 0 and add one message to the TX-FIFO
  145. * - Set CE=1 for more than 10 us
  146. * - The NRF takes 130 us to enter the TX Mode
  147. * - An Interrupt is generated once the
  148. * -
  149. */
  150. /* Set the NRF to RX Mode */
  151. /* Disable the RX Mode */
  152. uint8_t Read_NRF_Status_Register(void)
  153. {
  154. uint8_t registerContents;
  155. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  156. registerContents = SPI_Transfer_Byte(0x00);
  157. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  158. return registerContents;
  159. }
  160. uint8_t Read_NRF_Register(uint8_t address, uint8_t * registerContents)
  161. {
  162. /* TODO: simplify this function, as the registers with more than one byte are accessed with other functions */
  163. uint8_t numberOfBytes = 0;
  164. if ((address == 0x0A) ||
  165. (address == 0x0B) ||
  166. (address == 0x10))
  167. {
  168. numberOfBytes = 5;
  169. }
  170. else
  171. {
  172. numberOfBytes = 1;
  173. }
  174. /* First write the address */
  175. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  176. SPI_Transfer_Byte(address);
  177. /* Read the register bytes */
  178. for (uint8_t i = 0; i < numberOfBytes; i++)
  179. {
  180. /* Write dummy data to shift in the register content */
  181. registerContents[i] = SPI_Transfer_Byte(0x0);
  182. }
  183. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  184. return numberOfBytes;
  185. }
  186. void Write_NRF_Register(uint8_t address, uint8_t registerContents)
  187. {
  188. /* First write the write command with the address */
  189. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  190. SPI_Transfer_Byte(address | 0x20);
  191. /* Write the data byte */
  192. SPI_Transfer_Byte(registerContents);
  193. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  194. }
  195. // TODO: clean up functions
  196. void Send_Activate_Command(void)
  197. {
  198. /* First write the write command with the address */
  199. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  200. SPI_Transfer_Byte(0x50);
  201. /* Write the data byte */
  202. SPI_Transfer_Byte(0x73);
  203. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  204. }
  205. void Send_TX_Flush_Command(void)
  206. {
  207. /* First write the write command with the address */
  208. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  209. SPI_Transfer_Byte(0xE1);
  210. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  211. }
  212. void Write_Message_To_TX_FIFO(uint8_t length, uint8_t * buffer)
  213. {
  214. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  215. /* Issue the write command: */
  216. SPI_Transfer_Byte(0xA0);
  217. /* Write the data bytes */
  218. for (uint8_t i = 0; i < length; i++)
  219. {
  220. SPI_Transfer_Byte(buffer[i]);
  221. }
  222. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  223. }
  224. void Set_TX_Address(uint8_t * txAddress, uint8_t length)
  225. {
  226. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  227. SPI_Transfer_Byte(TX_ADDR_ADDRESS | 0x20);
  228. /* Write the data byte */
  229. for (uint8_t i = 0; i < length; i ++)
  230. {
  231. SPI_Transfer_Byte(txAddress[i]);
  232. }
  233. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  234. }
  235. void Set_RX_P0_Address(uint8_t * rxAddress, uint8_t length)
  236. {
  237. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  238. SPI_Transfer_Byte(RX_ADDR_P0_ADDRESS | 0x20);
  239. /* Write the data byte */
  240. for (uint8_t i = 0; i < length; i ++)
  241. {
  242. SPI_Transfer_Byte(rxAddress[i]);
  243. }
  244. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  245. }
  246. //TODO: only write the used bytes into the address registers & add generic write functions