Нема описа
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350
  1. #include <stdint.h>
  2. #include <avr/io.h>
  3. #include <util/delay.h>
  4. #include <stdio.h>
  5. #include <stdbool.h>
  6. #include "spi.h"
  7. #include "nrf24l01.h"
  8. #include "nrf24l01_definitions.h"
  9. #include "uart_debug.h"
  10. /* TODO
  11. * - Build a state machine that tracks the mode the NRF is set to
  12. * - Configuration of NRF24L01 and startup
  13. * - Send and Receive functions
  14. * - Interrupt handling for Send and Receive
  15. */
  16. void Print_Register_Contents(uint8_t address);
  17. void Send_TX_Flush_Command(void);
  18. /* Startup and initial configuration of the NRF24L01 */
  19. void Initialize_NRF24L01(void)
  20. {
  21. CONFIG_REGISTER configRegisterContents = {.byte = 0x0};
  22. /* Configure the AVR pins for the nrf24l01 */
  23. /* Set up the NRF24L01 */
  24. NRF_CE_DDR |= (1 << NRF_CE_PIN);
  25. NRF_CSN_DDR |= (1 << NRF_CSN_PIN);
  26. /* Set the chip select pin to not selected */
  27. NRF_CSN_PORT |= (1 << NRF_CSN_PIN);
  28. /* Ensure that the CE pin is set to 0*/
  29. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  30. /* Wait more than 10.3 ms to make sure the nrf24l01 is running */
  31. _delay_ms(11);
  32. /* Write the PWR_UP bit of the CONFIG register (EN_CRC is also set) */
  33. configRegisterContents.bits.EN_CRC = 0x1;
  34. configRegisterContents.bits.PWR_UP = 0x1;
  35. Write_NRF_Register(CONFIG_ADDRESS, configRegisterContents.byte);
  36. /* Wait more than 1.5 ms for the change to take effect */
  37. _delay_ms(2);
  38. /* The NRF24L01 is now in the mode Standby-I */
  39. }
  40. void Configure_Transmission(void)
  41. {
  42. FEATURE_REGISTER featureRegisterContents = {.byte = 0x0};
  43. DYNPD_REGISTER dyndpRegisterContents = {.byte = 0x0};
  44. SETUP_RETR_REGISTER setupRetrRegisterContents = {.byte = 0x0};
  45. /*
  46. * - Length of CRC (CRCO in CONFIG)
  47. * - Enable auto acknowledgment (EN_AA)
  48. * -> Register already set correctly after reset
  49. * - Enable data pipes (EN_RXADDR)?
  50. * -> Two pipes are already enabled on reset
  51. * - Set up address width (SETUP_AW)
  52. * -> 3 bytes
  53. * - Automatic Retransmission (SETUP_RETR)
  54. * -> ARD = 0b0000
  55. * -> 3 retransmits -> ARC = 0b0011
  56. * -> Register already set correctly after reset
  57. * - RF Channel (RF_CH)
  58. * -> RF_CH = 0b1010000
  59. * - RF Setup (RF_SETUP)
  60. * -> first use reset values, can be fine tuned later
  61. * - Enable dynamic payload length (DYNPD) -> command activate + 0x73, then set bits in FEATURE?
  62. */
  63. /* Set the address width to 3 bytes */
  64. //Write_NRF_Register(0x03, 0x1);
  65. /* Set the frequency to 1450 MHz */
  66. Write_NRF_Register(RF_CH_ADDRESS, 0x32);
  67. /* Enable dynamic payload length */
  68. Send_Activate_Command();
  69. featureRegisterContents.bits.EN_DPL = 1; // enable dynamic payload length
  70. Write_NRF_Register(FEATURE_ADDRESS, featureRegisterContents.byte);
  71. /* */
  72. setupRetrRegisterContents.bits.ARC = 0x3;
  73. setupRetrRegisterContents.bits.ARD = 0xF;
  74. Write_NRF_Register(SETUP_RETR_ADDRESS, setupRetrRegisterContents.byte);
  75. /* set dynamic payload length for all data pipes */
  76. dyndpRegisterContents.bits.DPL_P0 = 1;
  77. dyndpRegisterContents.bits.DPL_P1 = 1;
  78. dyndpRegisterContents.bits.DPL_P2 = 1;
  79. dyndpRegisterContents.bits.DPL_P3 = 1;
  80. dyndpRegisterContents.bits.DPL_P4 = 1;
  81. dyndpRegisterContents.bits.DPL_P5 = 1;
  82. Write_NRF_Register(DYNPD_ADDRESS, dyndpRegisterContents.byte);
  83. /* Set the TX address */
  84. Set_TX_Address(0x123456);
  85. Set_RX_P0_Address(0x123456);
  86. // TODO: set addresses for all data pipes
  87. }
  88. void NRF24L01_Send_Message(uint8_t *buffer, uint8_t length)
  89. {
  90. bool transmissionFinished = false;
  91. STATUS_REGISTER statusRegisterContents = {.byte = 0x0};
  92. char debugString[50] = "";
  93. uint32_t timeout = 0;
  94. /* TODO:
  95. * - if needed: PRIM_RX = 0
  96. * - Set CE = 1 for more than 10 us
  97. * - Wait until the transmission is finished
  98. * - Read number of retries for debug purposes
  99. * - Check if the FIFO is empty -> if not, flush it
  100. * - reset the interupts of the STATUS
  101. */
  102. /* TODO: messages with more than 32 byte length */
  103. if ((length > 32) || (length == 0))
  104. {
  105. return;
  106. }
  107. Write_Message_To_TX_FIFO(length, buffer);
  108. /* Set CE = 1 for more than 10 us */
  109. NRF_CE_PORT |= (1 << NRF_CE_PIN);
  110. _delay_us(15);
  111. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  112. sprintf(debugString, "-\r\n");
  113. Print_Debug_String(debugString);
  114. do
  115. {
  116. _delay_ms(1);
  117. statusRegisterContents.byte = Read_NRF_Status_Register();
  118. if (statusRegisterContents.bits.TX_DS == 1)
  119. {
  120. transmissionFinished = true;
  121. sprintf(debugString, "%s\r\n", "TX fin");
  122. Print_Debug_String(debugString);
  123. }
  124. if (statusRegisterContents.bits.MAX_RT == 1)
  125. {
  126. transmissionFinished = true; //TODO: indicate failure
  127. sprintf(debugString, "%s\r\n", "max ret");
  128. Print_Debug_String(debugString);
  129. Send_TX_Flush_Command(); /* Remove the packet from the TX FIFO as it is not done automatically */
  130. }
  131. timeout ++; // TODO: this should work without the time out, as MAX_RT should be triggered if no ACK is received
  132. } while ((transmissionFinished == false) && (timeout < 0xFF));
  133. if (timeout >= 0xFF)
  134. {
  135. sprintf(debugString, "%s\r\n", "timeout");
  136. Print_Debug_String(debugString);
  137. }
  138. /* Reset the interrupts */
  139. statusRegisterContents.byte = Read_NRF_Status_Register();
  140. statusRegisterContents.bits.TX_DS = 1;
  141. statusRegisterContents.bits.MAX_RT = 1;
  142. Write_NRF_Register(STATUS_ADDRESS, statusRegisterContents.byte);
  143. }
  144. void Print_Register_Contents(uint8_t address)
  145. {
  146. uint8_t registerContent[5];
  147. uint8_t lengthRead;
  148. char debugString[50] = "";
  149. char registerContentString[30];
  150. lengthRead = Read_NRF_Register(address, registerContent);
  151. registerContentString[0] = '\0';
  152. for (uint8_t i = 0; i < lengthRead; i++)
  153. {
  154. sprintf(registerContentString, "%s0x%x ", registerContentString, registerContent[i]);
  155. }
  156. sprintf(debugString, "%s\r\n", registerContentString);
  157. Print_Debug_String(debugString);
  158. }
  159. /* Send a message:
  160. * - Set PRIM_RX = 0 and add one message to the TX-FIFO
  161. * - Set CE=1 for more than 10 us
  162. * - The NRF takes 130 us to enter the TX Mode
  163. * - An Interrupt is generated once the
  164. * -
  165. */
  166. /* Set the NRF to RX Mode */
  167. /* Disable the RX Mode */
  168. uint8_t Read_NRF_Status_Register(void)
  169. {
  170. uint8_t registerContents;
  171. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  172. registerContents = SPI_Transfer_Byte(0x00);
  173. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  174. return registerContents;
  175. }
  176. uint8_t Read_NRF_Register(uint8_t address, uint8_t * registerContents)
  177. {
  178. /* TODO: simplify this function, as the registers with more than one byte are accessed with other functions */
  179. uint8_t numberOfBytes = 0;
  180. if ((address == 0x0A) ||
  181. (address == 0x0B) ||
  182. (address == 0x10))
  183. {
  184. numberOfBytes = 5;
  185. }
  186. else
  187. {
  188. numberOfBytes = 1;
  189. }
  190. /* First write the address */
  191. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  192. SPI_Transfer_Byte(address);
  193. /* Read the register bytes */
  194. for (uint8_t i = 0; i < numberOfBytes; i++)
  195. {
  196. /* Write dummy data to shift in the register content */
  197. registerContents[i] = SPI_Transfer_Byte(0x0);
  198. }
  199. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  200. return numberOfBytes;
  201. }
  202. void Write_NRF_Register(uint8_t address, uint8_t registerContents)
  203. {
  204. /* First write the write command with the address */
  205. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  206. SPI_Transfer_Byte(address | 0x20);
  207. /* Write the data byte */
  208. SPI_Transfer_Byte(registerContents);
  209. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  210. }
  211. // TODO: clean up functions
  212. void Send_Activate_Command(void)
  213. {
  214. /* First write the write command with the address */
  215. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  216. SPI_Transfer_Byte(0x50);
  217. /* Write the data byte */
  218. SPI_Transfer_Byte(0x73);
  219. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  220. }
  221. void Send_TX_Flush_Command(void)
  222. {
  223. /* First write the write command with the address */
  224. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  225. SPI_Transfer_Byte(0xE1);
  226. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  227. }
  228. void Write_Message_To_TX_FIFO(uint8_t length, uint8_t * buffer)
  229. {
  230. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  231. /* Issue the write command: */
  232. SPI_Transfer_Byte(0xA0);
  233. /* Write the data bytes */
  234. for (uint8_t i = 0; i < length; i++)
  235. {
  236. SPI_Transfer_Byte(buffer[i]);
  237. }
  238. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  239. }
  240. void Set_TX_Address(uint32_t txAddress)
  241. {
  242. uint8_t * buffer = (uint8_t*) &txAddress;
  243. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  244. SPI_Transfer_Byte(TX_ADDR_ADDRESS | 0x20);
  245. /* Write the data byte */
  246. for (uint8_t i = 0; i < 4; i ++)
  247. {
  248. SPI_Transfer_Byte(buffer[i]);
  249. }
  250. SPI_Transfer_Byte(0x0);
  251. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  252. }
  253. void Set_RX_P0_Address(uint32_t rxAddress)
  254. {
  255. uint8_t * buffer = (uint8_t*) &rxAddress;
  256. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  257. SPI_Transfer_Byte(RX_ADDR_P0_ADDRESS | 0x20);
  258. /* Write the data byte */
  259. for (uint8_t i = 0; i < 4; i ++)
  260. {
  261. SPI_Transfer_Byte(buffer[i]);
  262. }
  263. SPI_Transfer_Byte(0x0);
  264. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  265. }
  266. //TODO: only write the used bytes into the address registers & add generic write functions