Нема описа
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333334335336337338339340341342343344345346347348349350351352353354355356
  1. #include <stdint.h>
  2. #include <avr/io.h>
  3. #include <util/delay.h>
  4. #include <stdio.h>
  5. #include <stdbool.h>
  6. #include "nrf24l01.h"
  7. #include "nrf24l01_definitions.h"
  8. #include "uart_debug.h"
  9. /* TODO
  10. * - Build a state machine that tracks the mode the NRF is set to
  11. * - Configuration of NRF24L01 and startup
  12. * - Send and Receive functions
  13. * - Interrupt handling for Send and Receive
  14. */
  15. void Print_Register_Contents(uint8_t address);
  16. /* Startup and initial configuration of the NRF24L01 */
  17. void Initialize_NRF24L01(void)
  18. {
  19. CONFIG_REGISTER configRegisterContents = {.byte = 0x0};
  20. /* Configure the AVR pins for the nrf24l01 */
  21. /* Set up the NRF24L01 */
  22. NRF_CE_DDR |= (1 << NRF_CE_PIN);
  23. NRF_CSN_DDR |= (1 << NRF_CSN_PIN);
  24. NRF_CSN_PORT |= (1 << NRF_CSN_PIN);
  25. /* Ensure that the CE pin is set to 0*/
  26. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  27. /* Wait more than 10.3 ms to make sure the nrf24l01 is running */
  28. _delay_ms(11);
  29. /* Write the PWR_UP bit of the CONFIG register (EN_CRC is also set) */
  30. configRegisterContents.bits.EN_CRC = 0x1;
  31. configRegisterContents.bits.PWR_UP = 0x1;
  32. Write_NRF_Register(CONFIG_ADDRESS, configRegisterContents.byte);
  33. /* Wait more than 1.5 ms for the change to take effect */
  34. _delay_ms(2);
  35. /* The NRF24L01 is now in the mode Standby-I */
  36. }
  37. void Configure_Transmission(void)
  38. {
  39. FEATURE_REGISTER featureRegisterContents = {.byte = 0x0};
  40. DYNPD_REGISTER dyndpRegisterContents = {.byte = 0x0};
  41. /*
  42. * - Length of CRC (CRCO in CONFIG)
  43. * - Enable auto acknowledgment (EN_AA)
  44. * -> Register already set correctly after reset
  45. * - Enable data pipes (EN_RXADDR)?
  46. * -> Two pipes are already enabled on reset
  47. * - Set up address width (SETUP_AW)
  48. * -> 3 bytes
  49. * - Automatic Retransmission (SETUP_RETR)
  50. * -> ARD = 0b0000
  51. * -> 3 retransmits -> ARC = 0b0011
  52. * -> Register already set correctly after reset
  53. * - RF Channel (RF_CH)
  54. * -> RF_CH = 0b1010000
  55. * - RF Setup (RF_SETUP)
  56. * -> first use reset values, can be fine tuned later
  57. * - Enable dynamic payload length (DYNPD) -> command activate + 0x73, then set bits in FEATURE?
  58. */
  59. /* Set the address width to 3 bytes */
  60. //Write_NRF_Register(0x03, 0x1);
  61. /* Set the frequency to 1450 MHz */
  62. Write_NRF_Register(RF_CH_ADDRESS, 0x32);
  63. /* Enable dynamic payload length */
  64. Send_Activate_Command();
  65. featureRegisterContents.bits.EN_DPL = 1; // enable dynamic payload length
  66. Write_NRF_Register(FEATURE_ADDRESS, featureRegisterContents.byte);
  67. /* set dynamic payload length for all data pipes */
  68. dyndpRegisterContents.bits.DPL_P0 = 1;
  69. dyndpRegisterContents.bits.DPL_P1 = 1;
  70. dyndpRegisterContents.bits.DPL_P2 = 1;
  71. dyndpRegisterContents.bits.DPL_P3 = 1;
  72. dyndpRegisterContents.bits.DPL_P4 = 1;
  73. dyndpRegisterContents.bits.DPL_P5 = 1;
  74. Write_NRF_Register(DYNPD_ADDRESS, dyndpRegisterContents.byte);
  75. /* Set the TX address */
  76. Set_TX_Address(0x123456);
  77. Set_RX_P0_Address(0x123456);
  78. // TODO: set addresses for all data pipes
  79. }
  80. void Send_Test_Message(void)
  81. {
  82. uint8_t buffer[4] = {0xDE, 0xAD, 0xBE, 0xEF};
  83. bool transmissionFinished = false;
  84. STATUS_REGISTER statusRegisterContents = {.byte = 0x0};
  85. uint8_t lengthRead;
  86. char debugString[50] = "";
  87. uint32_t timeout = 0;
  88. /* TODO:
  89. * - if needed: PRIM_RX = 0
  90. * - Set CE = 1 for more than 10 us
  91. * - Wait until the transmission is finished
  92. * - Read number of retries for debug purposes
  93. * - Check if the FIFO is empty -> if not, flush it
  94. * - reset the interupts of the STATUS
  95. */
  96. Write_Message_To_TX_FIFO(4, buffer);
  97. /* Set CE = 1 for more than 10 us */
  98. NRF_CE_PORT |= (1 << NRF_CE_PIN);
  99. _delay_us(15);
  100. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  101. do
  102. {
  103. _delay_ms(1);
  104. lengthRead = Read_NRF_Register(STATUS_ADDRESS, &(statusRegisterContents.byte)); /* TODO: use funtion to read status register -> no overflow possible, only one NOP transfer needed, not two */
  105. if (lengthRead > 1)
  106. {
  107. sprintf(debugString, "%s\r\n", "Read error");
  108. Print_Debug_String(debugString);
  109. }
  110. if (statusRegisterContents.bits.TX_DS == 1)
  111. {
  112. transmissionFinished = true;
  113. sprintf(debugString, "%s\r\n", "TX fin");
  114. Print_Debug_String(debugString);
  115. }
  116. if (statusRegisterContents.bits.MAX_RT == 1)
  117. {
  118. transmissionFinished = true; //TODO: indicate failure
  119. sprintf(debugString, "%s\r\n", "max ret");
  120. Print_Debug_String(debugString);
  121. }
  122. timeout ++; // TODO: this should work without the time out, as MAX_RT should be triggered if no ACK is received
  123. } while ((transmissionFinished == false) && (timeout < 0xFF));
  124. if (timeout >= 0xFF)
  125. {
  126. sprintf(debugString, "%s\r\n", "timeout");
  127. Print_Debug_String(debugString);
  128. }
  129. /* Reset the interrupts */
  130. lengthRead = Read_NRF_Register(STATUS_ADDRESS, &(statusRegisterContents.byte)); /* TODO: use status register read function */
  131. statusRegisterContents.bits.TX_DS = 1;
  132. statusRegisterContents.bits.MAX_RT = 1;
  133. Write_NRF_Register(STATUS_ADDRESS, statusRegisterContents.byte);
  134. // TODO: flush FIFO if an error occured
  135. }
  136. void Print_Register_Contents(uint8_t address)
  137. {
  138. uint8_t registerContent[5];
  139. uint8_t lengthRead;
  140. char debugString[50] = "";
  141. char registerContentString[30];
  142. lengthRead = Read_NRF_Register(address, registerContent);
  143. registerContentString[0] = '\0';
  144. for (uint8_t i = 0; i < lengthRead; i++)
  145. {
  146. sprintf(registerContentString, "%s0x%x ", registerContentString, registerContent[i]);
  147. }
  148. sprintf(debugString, "%s\r\n", registerContentString);
  149. Print_Debug_String(debugString);
  150. }
  151. /* Send a message:
  152. * - Set PRIM_RX = 0 and add one message to the TX-FIFO
  153. * - Set CE=1 for more than 10 us
  154. * - The NRF takes 130 us to enter the TX Mode
  155. * - An Interrupt is generated once the
  156. * -
  157. */
  158. /* Set the NRF to RX Mode */
  159. /* Disable the RX Mode */
  160. uint8_t Read_NRF_Status_Register(void)
  161. {
  162. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  163. SPDR = 0XFF;
  164. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  165. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  166. return SPDR;
  167. }
  168. uint8_t Read_NRF_Register(uint8_t address, uint8_t * registerContents)
  169. {
  170. uint8_t numberOfBytes = 0;
  171. if ((address == 0x0A) ||
  172. (address == 0x0B) ||
  173. (address == 0x10))
  174. {
  175. numberOfBytes = 5;
  176. }
  177. else
  178. {
  179. numberOfBytes = 1;
  180. }
  181. /* First write the address */
  182. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  183. SPDR = address;
  184. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  185. /* Read the register bytes */
  186. for (uint8_t i = 0; i < numberOfBytes; i++)
  187. {
  188. /* Write dummy data to shift in the register content */
  189. SPDR = 0x0;
  190. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  191. registerContents[i] = SPDR;
  192. }
  193. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  194. // TODO: registers with more than one byte
  195. return numberOfBytes;
  196. }
  197. void Write_NRF_Register(uint8_t address, uint8_t registerContents)
  198. {
  199. /* First write the write command with the address */
  200. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  201. SPDR = address | 0x20;
  202. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  203. /* Write the data byte */
  204. SPDR = registerContents;
  205. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  206. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  207. }
  208. void Send_Activate_Command(void)
  209. {
  210. /* First write the write command with the address */
  211. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  212. SPDR = 0x50;
  213. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  214. /* Write the data byte */
  215. SPDR = 0x73;
  216. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  217. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  218. }
  219. void Write_Message_To_TX_FIFO(uint8_t length, uint8_t * buffer)
  220. {
  221. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  222. /* Issue the write command: */
  223. SPDR = 0xA0;
  224. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  225. /* Write the data bytes */
  226. for (uint8_t i = 0; i < length; i++)
  227. {
  228. SPDR = buffer[i];
  229. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  230. }
  231. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  232. }
  233. void Set_TX_Address(uint32_t txAddress)
  234. {
  235. uint8_t * buffer = (uint8_t*) &txAddress;
  236. /* First write the write command with the address */
  237. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  238. SPDR = 0x10 | 0x20;
  239. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  240. /* Write the data byte */
  241. for (uint8_t i = 0; i < 4; i ++)
  242. {
  243. SPDR = buffer[i];
  244. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  245. }
  246. SPDR = 0x0;
  247. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  248. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  249. }
  250. void Set_RX_P0_Address(uint32_t rxAddress)
  251. {
  252. uint8_t * buffer = (uint8_t*) &rxAddress;
  253. /* First write the write command with the address */
  254. NRF_CSN_PORT &= ~(1 << NRF_CSN_PIN); // Start the transmission
  255. SPDR = 0x0A | 0x20;
  256. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  257. /* Write the data byte */
  258. for (uint8_t i = 0; i < 4; i ++)
  259. {
  260. SPDR = buffer[i];
  261. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  262. }
  263. SPDR = 0x0;
  264. while(!(SPSR & (1<<SPIF))); // Wait for transmission complete
  265. NRF_CSN_PORT |= (1 << NRF_CSN_PIN); // Stop the transmission
  266. }
  267. //TODO: only write the used bytes into the address registers