Ei kuvausta
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

nrf24l01.c 7.6KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285
  1. #include <stdint.h>
  2. #include <avr/io.h>
  3. #include <util/delay.h>
  4. #include <stdio.h>
  5. #include <stdbool.h>
  6. #include "led.h" // TODO: for debugging
  7. #include "spi.h"
  8. #include "nrf24l01.h"
  9. #include "nrf24l01_definitions.h"
  10. /* TODO
  11. * - Send functions
  12. * - Interrupt handling for Send
  13. */
  14. extern volatile bool nrfInterruptRaised;
  15. void Print_Register_Contents(uint8_t address);
  16. void Send_TX_Flush_Command(void);
  17. static void Write_Two_Bytes(uint8_t byte1, uint8_t byte2);
  18. static void Write_Byte_And_Buffer(uint8_t byte, uint8_t * buffer, uint8_t length);
  19. /* Startup and initial configuration of the NRF24L01 */
  20. void Initialize_NRF24L01(void)
  21. {
  22. CONFIG_REGISTER configRegisterContents = {.byte = 0x0};
  23. /* Configure the AVR pins for the nrf24l01 */
  24. Set_NRF24L01_Pins();
  25. /* Wait more than 10.3 ms to make sure the nrf24l01 is running */
  26. _delay_ms(11);
  27. /* Write the PWR_UP bit of the CONFIG register (EN_CRC is also set) */
  28. configRegisterContents.bits.EN_CRC = 0x1;
  29. configRegisterContents.bits.PWR_UP = 0x1;
  30. Write_NRF_Register(CONFIG_ADDRESS, configRegisterContents.byte);
  31. /* Wait more than 1.5 ms for the change to take effect */
  32. _delay_ms(2);
  33. /* The NRF24L01 is now in the mode Standby-I */
  34. }
  35. void Set_NRF24L01_Pins(void)
  36. {
  37. /* Set up the NRF24L01 */
  38. NRF_CE_DDR |= (1 << NRF_CE_PIN);
  39. NRF_CSN_DDR |= (1 << NRF_CSN_PIN);
  40. /* Set the chip select pin to not selected */
  41. NRF_CSN_PORT |= (1 << NRF_CSN_PIN);
  42. /* Ensure that the CE pin is set to 0*/
  43. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  44. /* Set the interrupt pin */
  45. /* TODO: PCINT21 -> PCINT2 */
  46. NRF_IRQ_DDR &= ~(1 << NRF_IRQ_PIN); // Set the pin as input
  47. NRF_IRQ_PORT |= (1 << NRF_IRQ_PORT); // Enable the pullup for the pin
  48. }
  49. void Configure_Transmission(uint8_t moduleId)
  50. {
  51. FEATURE_REGISTER featureRegisterContents = {.byte = 0x0};
  52. DYNPD_REGISTER dyndpRegisterContents = {.byte = 0x0};
  53. SETUP_RETR_REGISTER setupRetrRegisterContents = {.byte = 0x0};
  54. uint8_t txAddress[5] = {0xB3, 0xB3, 0xB3, 0xB3, 0x00};
  55. uint8_t rx0Address[5] = {0xB3, 0xB3, 0xB3, 0xB3, 0x20};
  56. /*
  57. * - Length of CRC (CRCO in CONFIG)
  58. * - Enable auto acknowledgment (EN_AA)
  59. * -> Register already set correctly after reset
  60. * - Enable data pipes (EN_RXADDR)?
  61. * -> Two pipes are already enabled on reset
  62. * - Set up address width (SETUP_AW)
  63. * -> 3 bytes
  64. * - Automatic Retransmission (SETUP_RETR)
  65. * -> ARD = 0b0000
  66. * -> 3 retransmits -> ARC = 0b0011
  67. * -> Register already set correctly after reset
  68. * - RF Channel (RF_CH)
  69. * -> RF_CH = 0b1010000
  70. * - RF Setup (RF_SETUP)
  71. * -> first use reset values, can be fine tuned later
  72. * - Enable dynamic payload length (DYNPD) -> command activate + 0x73, then set bits in FEATURE?
  73. */
  74. /* Set the address width to 3 bytes */
  75. //Write_NRF_Register(0x03, 0x1);
  76. /* Set the frequency to 1450 MHz */
  77. Write_NRF_Register(RF_CH_ADDRESS, 0x32);
  78. /* Enable dynamic payload length */
  79. Send_Activate_Command();
  80. featureRegisterContents.bits.EN_DPL = 1; // enable dynamic payload length
  81. Write_NRF_Register(FEATURE_ADDRESS, featureRegisterContents.byte);
  82. /* */
  83. setupRetrRegisterContents.bits.ARC = 0x3;
  84. setupRetrRegisterContents.bits.ARD = 0xF;
  85. Write_NRF_Register(SETUP_RETR_ADDRESS, setupRetrRegisterContents.byte);
  86. /* set dynamic payload length for all data pipes */ // TODO: only pipe 0 is currently in use -> don't set the other values
  87. dyndpRegisterContents.bits.DPL_P0 = 1;
  88. dyndpRegisterContents.bits.DPL_P1 = 1;
  89. dyndpRegisterContents.bits.DPL_P2 = 1;
  90. dyndpRegisterContents.bits.DPL_P3 = 1;
  91. dyndpRegisterContents.bits.DPL_P4 = 1;
  92. dyndpRegisterContents.bits.DPL_P5 = 1;
  93. Write_NRF_Register(DYNPD_ADDRESS, dyndpRegisterContents.byte);
  94. /* Set the TX address */
  95. Set_TX_Address(txAddress, MAX_ADDRESS_LENGTH);
  96. rx0Address[4] = moduleId; // The last byte of the address corresponds to the Id set by the pin programming
  97. Set_RX_P0_Address(rx0Address, MAX_ADDRESS_LENGTH);
  98. PCMSK2 |= (1<<PCINT21); // Set the external interrupt for PD5
  99. }
  100. void NRF24L01_Send_Message(uint8_t *buffer, uint8_t length)
  101. {
  102. STATUS_REGISTER statusRegisterContents = {.byte = 0x0};
  103. if ((length > 32) || (length == 0))
  104. {
  105. return;
  106. }
  107. PCICR |= (1<<PCIE2); // Enable the interrupt for the IRQ signal
  108. Write_Message_To_TX_FIFO(length, buffer);
  109. /* Set CE = 1 for more than 10 us */
  110. NRF_CE_PORT |= (1 << NRF_CE_PIN);
  111. _delay_us(15);
  112. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  113. while (nrfInterruptRaised == false); // Wait until the transmission is complete
  114. /* An interrupt instead of polling the status register is used to avoid transmission errors
  115. * induced by the SPI:
  116. * https://forum.mysensors.org/topic/10452/nrf24l01-communication-failure-root-cause-and-solution
  117. */
  118. LED_PORT |= (1 << LED_PIN);
  119. statusRegisterContents.byte = Read_NRF_Status_Register();
  120. if (statusRegisterContents.bits.MAX_RT == 1)
  121. {
  122. Send_TX_Flush_Command(); /* Remove the packet from the TX FIFO as it is not done automatically */
  123. }
  124. /* Reset the interrupts */
  125. statusRegisterContents.bits.TX_DS = 1;
  126. statusRegisterContents.bits.MAX_RT = 1;
  127. statusRegisterContents.bits.RX_DR = 1;
  128. Write_NRF_Register(STATUS_ADDRESS, statusRegisterContents.byte);
  129. PCICR &= ~(1<<PCIE2); // Disable the interrupt for the IRQ signal
  130. nrfInterruptRaised = false;
  131. return;
  132. }
  133. uint8_t Read_NRF_Status_Register(void)
  134. {
  135. uint8_t registerContents;
  136. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  137. registerContents = SPI_Transfer_Byte(0x00);
  138. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  139. return registerContents;
  140. }
  141. /* TODO: rewrite the read register function if it is needed (remove the read operations for the 5-byte registers)*/
  142. #if 0
  143. uint8_t Read_NRF_Register(uint8_t address, uint8_t * registerContents)
  144. {
  145. /* TODO: simplify this function, as the registers with more than one byte are accessed with other functions */
  146. uint8_t numberOfBytes = 0;
  147. if ((address == 0x0A) ||
  148. (address == 0x0B) ||
  149. (address == 0x10))
  150. {
  151. numberOfBytes = 5;
  152. }
  153. else
  154. {
  155. numberOfBytes = 1;
  156. }
  157. /* First write the address */
  158. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  159. SPI_Transfer_Byte(address);
  160. /* Read the register bytes */
  161. for (uint8_t i = 0; i < numberOfBytes; i++)
  162. {
  163. /* Write dummy data to shift in the register content */
  164. registerContents[i] = SPI_Transfer_Byte(0x0);
  165. }
  166. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  167. return numberOfBytes;
  168. }
  169. #endif
  170. void Write_NRF_Register(uint8_t address, uint8_t registerContents)
  171. {
  172. Write_Two_Bytes(address | 0x20, registerContents);
  173. }
  174. void Send_Activate_Command(void)
  175. {
  176. Write_Two_Bytes(0x50, 0x73);
  177. }
  178. static void Write_Two_Bytes(uint8_t byte1, uint8_t byte2)
  179. {
  180. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  181. SPI_Transfer_Byte(byte1);
  182. SPI_Transfer_Byte(byte2);
  183. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  184. }
  185. void Send_TX_Flush_Command(void)
  186. {
  187. /* First write the write command with the address */
  188. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  189. SPI_Transfer_Byte(0xE1);
  190. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  191. }
  192. void Write_Message_To_TX_FIFO(uint8_t length, uint8_t * buffer)
  193. {
  194. Write_Byte_And_Buffer(0xA0, buffer, length);
  195. }
  196. void Set_TX_Address(uint8_t * txAddress, uint8_t length)
  197. {
  198. Write_Byte_And_Buffer(TX_ADDR_ADDRESS | 0x20, txAddress, length);
  199. }
  200. void Set_RX_P0_Address(uint8_t * rxAddress, uint8_t length)
  201. {
  202. Write_Byte_And_Buffer(RX_ADDR_P0_ADDRESS | 0x20, rxAddress, length);
  203. }
  204. static void Write_Byte_And_Buffer(uint8_t byte, uint8_t * buffer, uint8_t length)
  205. {
  206. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  207. SPI_Transfer_Byte(byte);
  208. /* Write the data byte */
  209. for (uint8_t i = 0; i < length; i ++)
  210. {
  211. SPI_Transfer_Byte(buffer[i]);
  212. }
  213. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  214. }
  215. //TODO: only write the used bytes into the address registers & add generic write functions