Açıklama Yok
You can not select more than 25 topics Topics must start with a letter or number, can include dashes ('-') and can be up to 35 characters long.

nrf24l01.c 8.2KB

123456789101112131415161718192021222324252627282930313233343536373839404142434445464748495051525354555657585960616263646566676869707172737475767778798081828384858687888990919293949596979899100101102103104105106107108109110111112113114115116117118119120121122123124125126127128129130131132133134135136137138139140141142143144145146147148149150151152153154155156157158159160161162163164165166167168169170171172173174175176177178179180181182183184185186187188189190191192193194195196197198199200201202203204205206207208209210211212213214215216217218219220221222223224225226227228229230231232233234235236237238239240241242243244245246247248249250251252253254255256257258259260261262263264265266267268269270271272273274275276277278279280281282283284285286287288289290291292293294295296297298299300301302303304305306307308309310311312313314315316317318319320321322323324325326327328329330331332333
  1. #include <stdint.h>
  2. #include <avr/io.h>
  3. #include <util/delay.h>
  4. #include <stdio.h>
  5. #include <stdbool.h>
  6. #include "spi.h"
  7. #include "nrf24l01.h"
  8. #include "nrf24l01_definitions.h"
  9. /* TODO
  10. * - Build a state machine that tracks the mode the NRF is set to
  11. * - Configuration of NRF24L01 and startup
  12. * - Send and Receive functions
  13. * - Interrupt handling for Send and Receive
  14. */
  15. void Print_Register_Contents(uint8_t address);
  16. void Send_TX_Flush_Command(void);
  17. /* Startup and initial configuration of the NRF24L01 */
  18. void Initialize_NRF24L01(void)
  19. {
  20. CONFIG_REGISTER configRegisterContents = {.byte = 0x0};
  21. /* Configure the AVR pins for the nrf24l01 */
  22. /* Set up the NRF24L01 */
  23. NRF_CE_DDR |= (1 << NRF_CE_PIN);
  24. NRF_CSN_DDR |= (1 << NRF_CSN_PIN);
  25. /* Set the chip select pin to not selected */
  26. NRF_CSN_PORT |= (1 << NRF_CSN_PIN);
  27. /* Ensure that the CE pin is set to 0*/
  28. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  29. /* Wait more than 10.3 ms to make sure the nrf24l01 is running */
  30. _delay_ms(11);
  31. /* Write the PWR_UP bit of the CONFIG register (EN_CRC is also set) */
  32. configRegisterContents.bits.EN_CRC = 0x1;
  33. configRegisterContents.bits.PWR_UP = 0x1;
  34. Write_NRF_Register(CONFIG_ADDRESS, configRegisterContents.byte);
  35. /* Wait more than 1.5 ms for the change to take effect */
  36. _delay_ms(2);
  37. /* The NRF24L01 is now in the mode Standby-I */
  38. }
  39. void Configure_Transmission(void)
  40. {
  41. FEATURE_REGISTER featureRegisterContents = {.byte = 0x0};
  42. DYNPD_REGISTER dyndpRegisterContents = {.byte = 0x0};
  43. SETUP_RETR_REGISTER setupRetrRegisterContents = {.byte = 0x0};
  44. /*
  45. * - Length of CRC (CRCO in CONFIG)
  46. * - Enable auto acknowledgment (EN_AA)
  47. * -> Register already set correctly after reset
  48. * - Enable data pipes (EN_RXADDR)?
  49. * -> Two pipes are already enabled on reset
  50. * - Set up address width (SETUP_AW)
  51. * -> 3 bytes
  52. * - Automatic Retransmission (SETUP_RETR)
  53. * -> ARD = 0b0000
  54. * -> 3 retransmits -> ARC = 0b0011
  55. * -> Register already set correctly after reset
  56. * - RF Channel (RF_CH)
  57. * -> RF_CH = 0b1010000
  58. * - RF Setup (RF_SETUP)
  59. * -> first use reset values, can be fine tuned later
  60. * - Enable dynamic payload length (DYNPD) -> command activate + 0x73, then set bits in FEATURE?
  61. */
  62. /* Set the address width to 3 bytes */
  63. //Write_NRF_Register(0x03, 0x1);
  64. /* Set the frequency to 1450 MHz */
  65. Write_NRF_Register(RF_CH_ADDRESS, 0x32);
  66. /* Enable dynamic payload length */
  67. Send_Activate_Command();
  68. featureRegisterContents.bits.EN_DPL = 1; // enable dynamic payload length
  69. Write_NRF_Register(FEATURE_ADDRESS, featureRegisterContents.byte);
  70. /* */
  71. setupRetrRegisterContents.bits.ARC = 0x3;
  72. setupRetrRegisterContents.bits.ARD = 0xF;
  73. Write_NRF_Register(SETUP_RETR_ADDRESS, setupRetrRegisterContents.byte);
  74. /* set dynamic payload length for all data pipes */
  75. dyndpRegisterContents.bits.DPL_P0 = 1;
  76. dyndpRegisterContents.bits.DPL_P1 = 1;
  77. dyndpRegisterContents.bits.DPL_P2 = 1;
  78. dyndpRegisterContents.bits.DPL_P3 = 1;
  79. dyndpRegisterContents.bits.DPL_P4 = 1;
  80. dyndpRegisterContents.bits.DPL_P5 = 1;
  81. Write_NRF_Register(DYNPD_ADDRESS, dyndpRegisterContents.byte);
  82. /* Set the TX address */
  83. Set_TX_Address(0x123456);
  84. Set_RX_P0_Address(0x123456);
  85. // TODO: set addresses for all data pipes
  86. }
  87. void NRF24L01_Send_Message(uint8_t *buffer, uint8_t length)
  88. {
  89. bool transmissionFinished = false;
  90. STATUS_REGISTER statusRegisterContents = {.byte = 0x0};
  91. uint32_t timeout = 0;
  92. /* TODO:
  93. * - if needed: PRIM_RX = 0
  94. * - Set CE = 1 for more than 10 us
  95. * - Wait until the transmission is finished
  96. * - Read number of retries for debug purposes
  97. * - Check if the FIFO is empty -> if not, flush it
  98. * - reset the interupts of the STATUS
  99. */
  100. /* TODO: messages with more than 32 byte length */
  101. if ((length > 32) || (length == 0))
  102. {
  103. return;
  104. }
  105. Write_Message_To_TX_FIFO(length, buffer);
  106. /* Set CE = 1 for more than 10 us */
  107. NRF_CE_PORT |= (1 << NRF_CE_PIN);
  108. _delay_us(15);
  109. NRF_CE_PORT &= ~(1 << NRF_CE_PIN);
  110. do
  111. {
  112. _delay_ms(1);
  113. statusRegisterContents.byte = Read_NRF_Status_Register();
  114. if (statusRegisterContents.bits.TX_DS == 1)
  115. {
  116. transmissionFinished = true;
  117. }
  118. if (statusRegisterContents.bits.MAX_RT == 1)
  119. {
  120. transmissionFinished = true; //TODO: indicate failure
  121. Send_TX_Flush_Command(); /* Remove the packet from the TX FIFO as it is not done automatically */
  122. }
  123. timeout ++; // TODO: this should work without the time out, as MAX_RT should be triggered if no ACK is received
  124. } while ((transmissionFinished == false) && (timeout < 0xFF));
  125. /* Reset the interrupts */
  126. statusRegisterContents.byte = Read_NRF_Status_Register();
  127. statusRegisterContents.bits.TX_DS = 1;
  128. statusRegisterContents.bits.MAX_RT = 1;
  129. Write_NRF_Register(STATUS_ADDRESS, statusRegisterContents.byte);
  130. }
  131. void Print_Register_Contents(uint8_t address)
  132. {
  133. uint8_t registerContent[5];
  134. uint8_t lengthRead;
  135. char registerContentString[30];
  136. lengthRead = Read_NRF_Register(address, registerContent);
  137. registerContentString[0] = '\0';
  138. for (uint8_t i = 0; i < lengthRead; i++)
  139. {
  140. sprintf(registerContentString, "%s0x%x ", registerContentString, registerContent[i]);
  141. }
  142. }
  143. /* Send a message:
  144. * - Set PRIM_RX = 0 and add one message to the TX-FIFO
  145. * - Set CE=1 for more than 10 us
  146. * - The NRF takes 130 us to enter the TX Mode
  147. * - An Interrupt is generated once the
  148. * -
  149. */
  150. /* Set the NRF to RX Mode */
  151. /* Disable the RX Mode */
  152. uint8_t Read_NRF_Status_Register(void)
  153. {
  154. uint8_t registerContents;
  155. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  156. registerContents = SPI_Transfer_Byte(0x00);
  157. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  158. return registerContents;
  159. }
  160. uint8_t Read_NRF_Register(uint8_t address, uint8_t * registerContents)
  161. {
  162. /* TODO: simplify this function, as the registers with more than one byte are accessed with other functions */
  163. uint8_t numberOfBytes = 0;
  164. if ((address == 0x0A) ||
  165. (address == 0x0B) ||
  166. (address == 0x10))
  167. {
  168. numberOfBytes = 5;
  169. }
  170. else
  171. {
  172. numberOfBytes = 1;
  173. }
  174. /* First write the address */
  175. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  176. SPI_Transfer_Byte(address);
  177. /* Read the register bytes */
  178. for (uint8_t i = 0; i < numberOfBytes; i++)
  179. {
  180. /* Write dummy data to shift in the register content */
  181. registerContents[i] = SPI_Transfer_Byte(0x0);
  182. }
  183. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  184. return numberOfBytes;
  185. }
  186. void Write_NRF_Register(uint8_t address, uint8_t registerContents)
  187. {
  188. /* First write the write command with the address */
  189. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  190. SPI_Transfer_Byte(address | 0x20);
  191. /* Write the data byte */
  192. SPI_Transfer_Byte(registerContents);
  193. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  194. }
  195. // TODO: clean up functions
  196. void Send_Activate_Command(void)
  197. {
  198. /* First write the write command with the address */
  199. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  200. SPI_Transfer_Byte(0x50);
  201. /* Write the data byte */
  202. SPI_Transfer_Byte(0x73);
  203. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  204. }
  205. void Send_TX_Flush_Command(void)
  206. {
  207. /* First write the write command with the address */
  208. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  209. SPI_Transfer_Byte(0xE1);
  210. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  211. }
  212. void Write_Message_To_TX_FIFO(uint8_t length, uint8_t * buffer)
  213. {
  214. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  215. /* Issue the write command: */
  216. SPI_Transfer_Byte(0xA0);
  217. /* Write the data bytes */
  218. for (uint8_t i = 0; i < length; i++)
  219. {
  220. SPI_Transfer_Byte(buffer[i]);
  221. }
  222. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  223. }
  224. void Set_TX_Address(uint32_t txAddress)
  225. {
  226. uint8_t * buffer = (uint8_t*) &txAddress;
  227. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  228. SPI_Transfer_Byte(TX_ADDR_ADDRESS | 0x20);
  229. /* Write the data byte */
  230. for (uint8_t i = 0; i < 4; i ++)
  231. {
  232. SPI_Transfer_Byte(buffer[i]);
  233. }
  234. SPI_Transfer_Byte(0x0);
  235. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  236. }
  237. void Set_RX_P0_Address(uint32_t rxAddress)
  238. {
  239. uint8_t * buffer = (uint8_t*) &rxAddress;
  240. SPI_Start_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  241. SPI_Transfer_Byte(RX_ADDR_P0_ADDRESS | 0x20);
  242. /* Write the data byte */
  243. for (uint8_t i = 0; i < 4; i ++)
  244. {
  245. SPI_Transfer_Byte(buffer[i]);
  246. }
  247. SPI_Transfer_Byte(0x0);
  248. SPI_Stop_Transmission(&NRF_CSN_PORT, NRF_CSN_PIN);
  249. }
  250. //TODO: only write the used bytes into the address registers & add generic write functions